Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water.
نویسندگان
چکیده
The effects of hydration on vibrational normal modes of trimethylamine N-oxide (TMAO) are investigated by Raman spectroscopy and electronic structure computations. Microsolvated networks of water are observed to induce either red or blue shifts in the normal modes of TMAO with increasing water concentration and to also exhibit distinct spectral signatures. By taking advantage of the selective and gradual nature of the water-induced shifts and using comparisons to theoretical predictions, the assignments of TMAO's normal modes are re-examined and the structure of the hydrogen-bonded network in the vicinity of TMAO is elucidated. Agreement between experiment and theory suggests that the oxygen atom in TMAO accepts on average at least three hydrogen bonds from neighboring water molecules and that water molecules are likely not directly interacting with TMAO's methyl groups.
منابع مشابه
Is There any Possible Association Between Trimethylamine N-Oxide (TMAO) and Cancer? A Review Study
Background: During the transit of digested animal source foods, gut microbiota synthesize metabolites that can affect the body cells. One of these metabolites, i.e. Trimethylamine (TMA) that is an intermediary metabolite, ultimately leads to the production of Trimethylamine N-oxide (TMAO). Several studies have been conducted to show the association between TMAO and different diseases. This arti...
متن کاملWater-mediated interactions between trimethylamine-N-oxide and urea.
The amphiphilic osmolyte trimethylamine-N-oxide (TMAO) is commonly found in natural organisms, where it counteracts biochemical stress associated with urea in aqueous environments. Despite the important role of TMAO as osmoprotectant, the mechanism behind TMAO's action has remained elusive. Here, we study the interaction between urea, TMAO, and water in solution using broadband (100 MHz-1.6 THz...
متن کاملTrimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations.
The osmolyte molecule trimethylamine-N-oxide (TMAO) stabilizes the structure of proteins. As functional proteins are generally found in aqueous solutions, an important aspect of this stabilization is the interaction of TMAO with water. Here, we review, using vibrational spectroscopy and molecular dynamics simulations, recent studies on the structure and dynamics of TMAO with its surrounding wat...
متن کاملInvestigation of the effect of trimethylamine-N-oxide on the proinflammatory cytokine genes expression in U937-derived macrophages
Background and Aim: Atherosclerosis is known as a multifactorial inflammatory disease. Trimethylamine N-oxide (TMAO) as a risk factor, has a potential to trigger or enhance the immune inflammatory reactions in atherosclerosis. Yet, The exact mechanism by which TMAO induces inflammation during atherosclerosis is not well understood. The present study was designed to evaluate the expression of IL...
متن کاملStructure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
The structural and energetic properties of solutions containing water, urea, and trimethylamine-N-oxide (TMAO) are examined using molecular dynamics simulations. Such systems are of interest mainly because TMAO acts to counter the protein denaturing effect of urea. Even at relatively high concentration, TMAO is found to fit well into the urea-water structure. The underlying solution structure i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 115 23 شماره
صفحات -
تاریخ انتشار 2011